
SGCI Webinar: Portable, Scalable
Computation with Containers and

Abaco Functions
Joe Stubbs, PhD

Lead, Cloud and Interactive Computing

Texas Advanced Computing Center
University of Texas, Austin

About Me
● Educational background in Mathematics and theoretical

Computer Science.
● Research Associate at Texas Advanced Computing Center

for about 6.5 years.
● Formed the Cloud and Interactive Computing (CIC) group

at TACC in March, 2017 (3 people).
● CIC focuses on cloud systems for research computing.
● Today CIC has 15 full time staff plus REU students and

professional interns.
● Our work primarily funded by NSF but increasingly other

agencies, including DARPA, CDC and NIH.

Webinar Outline
● Set the stage - an image classifier program in Python.
● Crash course introduction to containers and Docker.
● Introduce the serverless/Functions-as-a-Service (FaaS)

model.
● Cover the basics of Abaco (Actor Based Containers)

Platform.
● Walk through how to package our classifier program into a

Docker image and register it as an Abaco function.
● Execute our classifier on the Abaco cloud.

An Image Classifier Program in Python

Assume we have a Python program
that can classify an image

Utilizes Python, tensorflow and the
requests library

Usage:
$ python classify_image.py --image_file <URL_to_image>

An Image Classifier Program in Python

$ python classify_image.py --image_file https://bit.ly/2WYkdby

An Image Classifier Program in Python

https://bit.ly/2WYkdby

An Image Classifier Program in Python

$ python classify_image.py --image_file https://bit.ly/2WYkdby

. . . .
Successfully downloaded inception-2015-12-05.tgz 88931400 bytes.
Labrador retriever (score = 0.97471)
golden retriever (score = 0.00324)
kuvasz (score = 0.00099)
bull mastiff (score = 0.00095)
Saint Bernard, St Bernard (score = 0.00067)

Containers: Reproducible Environments

Infrastructure

Host Kernel/OS

App 1

Libs

App 2

Libs

App 3

Libs

Container Runtime

Isolated Userland Processes

Virtualized:
Network

I/O
CPU and MEM

Containers:
- Include all dependencies
- Ease installation
- Start up in miliseconds

Docker - A Container Platform

My Image

Build Custom
Images

Docker
Hub

Download
Prebuilt
Images

Dockerfile

Docker
Runtime C

Run
Containers

C

CC

client APIs

Manage
Running

Containers

Multi-host
Deployments Additional Tools

Dockerfile
● Text file with instructions for

building a Docker image.
● Small set of reserved words,

“FROM”, “RUN”, “ADD”, “CMD”,
etc.

● Only the resulting changes to the
file system matter.

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

ADD classify_image.py /classify_image.py

CMD ["python3", "/classify_image.py"]

Dockerfile

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

ADD classify_image.py /classify_image.py

CMD ["python3", "/classify_image.py"]

1) FROM instruction starts image with a pre-existing
image.

Dockerfile
1) FROM instruction starts image with a pre-existing
image.

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

ADD classify_image.py /classify_image.py

CMD ["python3", "/classify_image.py"]

2) RUN instruction runs arbitrary commands.

Dockerfile
1) FROM instruction starts image with a pre-existing
image.

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

ADD classify_image.py /classify_image.py

CMD ["python3", "/classify_image.py"]

2) RUN instruction runs arbitrary commands.

3) ADD instruction adds local files to the image.

Dockerfile
1) FROM instruction starts image with a pre-existing
image.

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

ADD classify_image.py /classify_image.py

CMD ["python3", "/classify_image.py"]

2) RUN instruction runs arbitrary commands.

3) ADD instruction adds local files to the image.

4) CMD instruction adds a default command to run in
containers started from the resulting image.

Dockerfile
1) FROM instruction starts image with a pre-existing
image.

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

ADD classify_image.py /classify_image.py

CMD ["python3", "/classify_image.py"]

2) RUN instruction runs arbitrary commands.

3) ADD instruction adds local files to the image.

4) CMD instruction adds a default command to run in
containers started from the resulting image.

$ docker build -t jstubbs/sgci-classifier .

Running Docker Containers
● Given an image, run one or more containers from it with:

$ docker run <options> <image> <command>

● Options include mounting directories from the host and exposing ports.

● Each container started from a given image has a copy of the entire image

file system.

● Any changes made to the file system by the running container do not

impact the image or other running containers.

FaaS aka “Serverless”
What It Is
● Cloud computing model & software architecture.
● Roots in projectes like PiCloud, circa 2011.
● Started in 2014 (AWS Lambda).

How It works
● Register small programs (functions) to run on the cloud.
● Invoke the function through an API.
● Cloud provider manages the computing infrastructure where

functions run.
● Enables applications to be developed without worrying about

servers.

FaaS Pros and Cons
Pros
● Encourages modularity
● Independent scalability of components
● Automated scalability (let someone else manage the servers)

Cons
● Harder to predict performance
● Harder to reason about and debug

FaaS Platforms
Commercial Open Source

● AWS Lambda
● Google Cloud Functions
● MicroSoft Azure Functions
● GitLab Serverless
● IBM Cloud Functions

● OpenFaas
● OpenWhisk
● IronFunctions
● SpringCloud Functions
● Kubeless

FaaS Platforms
Commercial Open Source

● AWS Lambda
● Google Cloud Functions
● MicroSoft Azure Functions
● GitLab Serverless
● IBM Cloud Functions

● OpenFaas
● OpenWhisk
● IronFunctions
● SpringCloud Functions
● Kubeless

Abaco?

*Abaco - Introduction
Docker + Actor Model = Functional Computing Platform
● “Severless” - users only interact with API
● Focus on research computing use cases, not enterprise services

Three Primary Capabilities
● “Reactors” for event-driven programming
● “Asynchronous Executors” for parallel function executions
● “Data Adapters” for building data services from disparate sources

of data

* Work supported by grant #1740288 from the US National Science Foundation.

Actor Model

{ “uuid”: “000141157089814”,
“event”: “UPDATED”,

"updateTime":
"2016-03-22T17:39:30.6:00",

"owner": "jdoe" }

A

STATE

M

A
A
A

A A A

Message Arrives

Compute and
save state

Send messages to other
actors

Create new actors

User-Defined Actors Via Docker

A IMAGE

● Associate an actor with a Docker image.
● Assign the actor’s inbox to a unique URI.
● Launch a container from the image in response to a message.

Abaco: Actor Based Containers

/actorsIMAGE
POST

https://api.tacc.utexas.edu/actors/184326

{ “uuid”:
“000141157089814”,
“event”: “UPDATED”,

"updateTime":
"2016-03-22T17:39:30.6:

00",
"owner": "jdoe" }

POST
https://api.tacc.utexas.edu/actors/184326/messages IMAGE

A M

Abaco: Actor Based Containers

/actorsIMAGE
POST

https://api.tacc.utexas.edu/actors/184326

{ “uuid”:
“000141157089814”,
“event”: “UPDATED”,

"updateTime":
"2016-03-22T17:39:30.6:

00",
"owner": "jdoe" }

POST
https://api.tacc.utexas.edu/actors/184326/messages IMAGE

A MFor messages of type TEXT, Abaco will inject an
environment variable, $MSG, into the container

Abaco Compared To Other Platforms
● Abaco is an open source project, funded by NSF, hosted at TACC

and free to use for researchers
● Abaco leverages the Actor Model - state, aliases, links, etc.
● Abaco targets the research computing use case

○ Single container executions can run for hours
○ Access to more CPU cores, memory, even GPUs

● Abaco integrates with other TACC resources
○ Authentication for accessing other cloud APIs
○ POSIX interfaces to high performance TACC storage
○ TACC Jupyter environments for scaling notebook functions

● Abaco components can run at other institutions

Usage and Adoption

Usage since Jan, 2018
● 40,000 actors

registered
● 600,000 executions
● 7M seconds of

runtime
● 1.3*10^18 Jiffies CPU

utilized

An Image Classifier Program on Abaco

● Assume we have a Python script that can classify an image
● Works like: python classify_image.py --image_file

<URL_to_image>
● We’ll put it in Docker and run it on the Abaco cloud

Preparing the Image Classifier Program for Abaco

1. Create a Dockerfile for our
program

2. Parse the $MSG
environment variable
Abaco will send

3. Set permissions in the
image so that a non-root
user can run our program.

from

FROM tensorflow/tensorflow:1.5.0-py3

RUN pip install requests

RUN mkdir /app
ADD classify_image.py /app/classify_image.py
ADD abaco.sh /app/abaco.sh
RUN chmod -R 777 /app

CMD ["/app/abaco.sh"]

https://github.com/joestubbs/faas-abaco-sgci-webinar

Preparing the Image Classifier Program, II

● We chose to write a small
BASH script to integrate
with Abaco.

● Separates original app
from Abaco integration.

● All this does is execute out
app and set the
parameter, image_file,
equal to $MSG

from

#!/bin/bash
abaco.sh -- Entrypoint for Abaco-ready app

cd /app
python classify_image.py --image_file=$MSG

https://github.com/joestubbs/faas-abaco-sgci-webinar

Preparing the Image Classifier Program, III

● Build the image:

$ docker build -t jstubbs/sgci-classifier .

● Test the image locally:

$ docker run -e MSG=<some_URL> jstubbs/sgci-classifier

● Push image to Docker Hub:

$ docker push jstubbs/sgci-classifier

*Registering the Classifier Actor
$ curl -H $TOKEN -d “image=jstubbs/sgci-classifier” https://api.tacc.utexas.edu/actors/v2
{

'createTime': '2019-09-03 22:41:29.563024',
'defaultEnvironment': {},
'description': '',
'id': 'O08Nzb3mRA7Bz',
'image': 'jstubbs/sgci-classifier',
'lastUpdateTime': '2019-09-03 22:41:29.563024',
'mounts': [],
'hints': [],
'link': "",
'name': '',
'owner': 'jstubbs',
'privileged': False,
'state': {},
'stateless': False,
'status': 'SUBMITTED',
'statusMessage': '',
'type': 'none',
'useContainerUid': False,
'webhook': ""

}
*Requires a TACC account and OAuth client registration

● The id of the actor - needed
for the next step.

● The status of the actor. Will
move to READY once
worker started and image
pulled.

https://api.tacc.utexas.edu/actors/v2

Executing Classifier Actor
$ curl -H $TOKEN -X POST -d “message=https://bit.ly/2WYkdby"
https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/messages
{
 "executionId": "RrGp0wkEbJplo",
 "msg": "https://bit.ly/2WYkdby"
} ● Abaco responds immediately; the

execution is asynchronous.

● The executionId is used to track
the execution and retrieve results
when it completes.

https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/messages

Executing Classifier Actor, II
$ curl -H $TOKEN
https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/RrGp0wkEbJplo
{
 "actorId": "YygyQkoZ65X0e",
 "cpu": 29441360370,
 "executor": "jstubbs",
 "exitCode": 0,
 "finalState": {
 "Error": "",
 "ExitCode": 0,
 "FinishedAt": "2019-09-07T20:00:14.629269037Z",
 "StartedAt": "2019-09-07T20:00:06.974068805Z",
 },
 "id": "RrGp0wkEbJplo",
 "io": 522702606,
 "messageReceivedTime": "2019-09-07 19:59:59.488538",
 "runtime": 9,
 "startTime": "2019-09-07 20:00:06.291694",
 "status": "COMPLETE",
}

● Abaco tracks various information
abou thte execution, including
resources utilized and metadata
about the final state.

● When the execution completes,
it’s status will change to
COMPLETE.

https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/RrGp0wkEbJplo

Retrieving Execution Logs
$ curl -H $TOKEN
https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/RrGp0wkEbJplo/logs

. . . .
Successfully downloaded inception-2015-12-05.tgz 88931400 bytes.
Labrador retriever (score = 0.97471)
golden retriever (score = 0.00324)
kuvasz (score = 0.00099)
bull mastiff (score = 0.00095)
Saint Bernard, St Bernard (score = 0.00067)

https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/RrGp0wkEbJplo/logs

Alternative Clients
Abaco CLI
 # create an actor:
 $ abaco create jstubbs/sgci-classifier
 # execute the actor
 $ abaco submit -m <URL> O08Nzb3mRA7Bz

Abaco Python SDK
>>> cl.actors.list()
>>> cl.actors.add(body={“image”: “jstubbs/sgci-classifier”})
>>> cl.actors.sendMessage(actorId=O08Nzb3mRA7Bz, message=<URL>)

https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/RrGp0wkEbJplo/logs
https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/RrGp0wkEbJplo/logs

Next Steps
● Send your actor messages to classify thousands of images
● Give your actor a meaningful alias
● Share your actor/alias with other researchers
● Expose your actor in a web application/science gateway
● Explore additional Abaco features: https://abaco.readthedocs.io

https://abaco.readthedocs.io

Thanks!

Questions?

Docs: https://abaco.readthedocs.io
Github: https://github.com/TACC/abaco

 Slack Team: https://tacc-cloud.slack.com, @cicsupport
Email: CICsupport@tacc.utexas.edu

https://abaco.readthedocs.io
https://github.com/TACC/abaco
https://tacc-cloud.slack.com

