Resources for scientific computing

Organizational
- supercomputers
- clusters
- grids
- clouds

Consumer
- desktop/laptop
- video game consoles
- smartphones, tablets
- appliances
- Internet
Performance potential

- 1 billion desktop/laptop PCs
 - CPUs: 10 ExaFLOPS
 - GPUs: 1,000 ExaFLOPS
- 5 billion smartphones
 - CPUs: 20 ExaFLOPS
 - GPUs: 1,500 ExaFLOPS
BOINC: middleware for volunteer computing

- Open-source, NSF-funded since 2002
- Server: distributes jobs, provides web site
- Client: runs jobs on consumer devices
- BOINC deals with
 - invisibility
 - device heterogeneity
 - recovery from random and malicious faults
Cost

Cost of 1 TFLOPS/year

- CPU cluster: $1.5M
- Amazon EC2: $4.5M
- BOINC: $0.1M

(cost in millions of dollars)
The original BOINC model

- Scientists create BOINC projects, compete for volunteers
- Volunteers evaluate projects, participate in the “best” ones
Projects using BOINC

- Climateprediction.net
- Rosetta@home
- Einstein@home
- IBM World Community Grid
- CERN
- . . .
Volunteer computing today

- 500,000 active computers
 - 2.3 million CPU cores
 - 290K GPUs
- 40 projects
- 90 PetaFLOPS
Problems and limitations

- The set of projects is small and static
 - creating a BOINC project is hard
 - risk: what if no volunteers?
 - not useful for sporadic or one-time workload

- The set of volunteers is declining
 - project lock-in
 - Marketing/branding
A new “coordinated” model for VC

Goals

- Serve more scientists
- Get more volunteers
- Move VC toward the mainstream of
 - HPC computational science
 - computer science
The model

- **Scientists**
 - add VC to existing HPC facilities like science gateways and supercomputer centers
 - prototypes: TACC, nanoHUB

- **The coordinator**
 - an interface to VC based on science goals rather than projects
 - a unified brand
 - an allocator of computing power to projects
Adding VC to existing HTC systems

- Application packaging
 - VirtualBox, Docker
- Remote job submission and file management
 - Web RPC interfaces
Onboard: a VC coordinator

- Volunteers pick science areas rather than projects.
- A resource allocation mechanism
 - XSEDE-based model
 - Projects no longer have to do PR
- A unified brand for marketing VC
Project status

- Funded 2016-2019
- TACC, nanoHUB
 - app packaging, job routing: done
 - public launch Q4
- Onboard
 - mostly done; Q4 launch
Interested?

- If your gateway could use lots of computing
 - high throughput/latency
 - large compute-intensive jobs

... then let’s talk!

davea@ssl.berkeley.edu
https://boinc.berkeley.edu