Skip to main content

CFP for PDADS 2022: 2nd International Workshop on Parallel and Distributed Algorithms for Decision Sciences

The 2nd International Workshop on Parallel and Distributed Algorithms for Decision Sciences (PDADS) Date: August 29, 2022 Location: Bordeaux, France URL: PDADS will be co-hosted with the 51st International Conference on Parallel Processing (ICPP 2022), August 29th to September 1st, 2022. =============== IMPORTANT DATES =============== * Paper Abstract Deadline: June 01, 2022 (AoE) * Full Paper Submission Deadline: June 10, 2022 (AoE) (no extension) * Author Notification: July 1, 2022 (AoE) * Camera-Ready Deadline: July 11, 2022 (AoE) * Workshop: August 29, 2022 =============== CALL FOR PAPERS =============== PDADS 2022 will focus on R&D efforts in cross-cutting areas at the intersection of algorithms research, computational sciences, decision sciences and optimization. Both regular papers as well as short position papers describing work-in-progress with innovative ideas related to the workshop topics are being solicited. Accepted papers will be published by the ACM International Conference Proceedings Series (ICPS), in conjunction with those of other ICPP workshops, in a volume entitled 51st International Conference on Parallel Processing Workshops (ICPP 2022 Workshops). This volume will be available for download via the ACM Digital Library. For paper submission guidelines, visit:

** Arrangements are ongoing for a Special Issue of a premier parallel and distributed computing journal where selected papers accepted in the workshop will be invited for submission of extended versions. Look out for updates in the Announcements section of the workshop URL ** ================== TOPICS OF INTEREST ================== * Parallel algorithms for integer/mixed-integer programming, linear/nonlinear  programming, stochastic programming, robust optimization, combinatorial  optimization, feasibility problems (SAT, CP, etc.). * Parallel heuristic and meta-heuristic algorithms. * Parallel evolutionary algorithms, swarm intelligence, ant colonies, other. * Parallel local and complete search methods. * Learning approaches for optimization in parallel and distributed environments. * Parallel and distributed approaches for parameter tuning, simulation-based optimization, and black box optimization. * Parallel algorithm portfolios. * Quantum optimization algorithms. * Use of randomization techniques for scalable decision support systems. * Application of decision support systems on novel computing platforms  (shared/distributed memory, edge devices, cloud platforms, field programable  gate arrays, quantum computers, etc.). * Use of parallel computing for timely and/or higher quality decision support. * Theoretical analysis of convergence and/or complexity of parallel optimization algorithms and decision support systems. * Optimization techniques in machine learning, such as high-performance first and higher order iterative optimization algorithms for minimizing loss and optimizing weight and bias tensors. * Application-centric manuscripts involving optimizations for decision-making capabilities in systems such as logistics, transportation and urban planning,  public health, manufacturing, energy (e.g., electric grids), digital twin systems (e.g., precision agriculture, smart cities, earth systems), operations  management, finance and other areas are especially encouraged.


General Chair
Sudip K. Seal, Oak Ridge National Laboratory, USA

Program Chairs
Meinolf Sellmann, Shopify, USA
Jim Ostrowski, University of Tennessee, USA

Publicity Chair
Yan Liu, Oak Ridge National Laboratory, USA For additional queries, email: Yan Liu <> or Sudip Seal <>